IPM packages for vegetable crops in India

S.Mohankumar & IPM-CRSP team members Tamil Nadu Agricultural University, Coimbatore

IPM-CRSP project (2005-2014)

IPM packages for major vegetables

IPM developed and validated Tomato, Okra, Eggplant, Onion (Shallot)

IPM development and validation in progress Chili (hot) pepper, Cauliflower, Cabbage and Cucurbits Evaluation, promotion and dissemination through farmerparticipatory methods

Major components in IPM approach

Use of bio-control agents/biopesticides Monitoring through pheromone traps and yellow sticky traps Use of trap crop and physical barrier crops Cultural practices Use of botanical pesticides and Need-based application of eco-friendly pesticides Μ Vegetables Nematode Insects Diseases **Brinjal (Eggplant)** Shoot and fruit borer Little leaf **RKN** Leaf hopper, Wilt-nematode **Whiteflies** complex **Root rot Epilachna beetle** Ash weevil **Red spider mite Fruit borers** Yellow vein mosaic Bhendi (Okra) **RKN Red spider mite** virus **Whiteflies Powdery mildew** Root rot **Tomato Fruit borers RKN** Viruses-Leaf miner Leaf curl and Tospo **Thrips** Wilt **Whiteflies Early blight Onion (Shallot) Bulb rot RKN** Thrips Cut worm **Purple blotch** Leaf miner

A

R

Ρ

Ε

S

Vegetables	Insects	Diseases	Nematodes
Hot pepper (Chili)	Thrips Yellow mite Whiteflies Aphids Fruit borers	Virus diseases Dieback &Fruit rot Damping off Powdery mildew	RKN
Cabbage	DBM Aphid Cutworm	Club root Leaf blight	
Cauliflower	DBM Aphid Cut worm	Leaf blight	
Cucurbits	Fruit fly Leaf miner Defoliators Insect vectors	Virus diseases Leaf spots	RKN

R

P

Ε

S

C

IPM components in vegetable crops

Components	Eggplant	Okra	Tomato	Onion
Seed treatment with Trichoderma viride (4g/kg)	Х	Х	Х	Х
Seed treatment with <i>Pseudomonas</i> @ 10 g/ kg of	Х	X	X	X
seed	X		X	
Nursery + seedling dip treatment with	X		X	
Pseudomonas @ 10 g/ lit of water				
Soil application of Neemcake @250 kg/ha	Х	Х	Х	Х
Boarder crop (maize/ marigold/ castor/mustard)	Х	Х	Х	Х
Use of yellow sticky traps	Х	Х	Х	Х
Clipping of shoot borer infested terminals/Roguing virus infected plants	Х	X	Х	
Pheromone traps (<i>Leucinodes, Helicoverpa,</i> Spodoptera)	X	X	Х	Х
Parasitoid release (Trichogramma, Acerophagus)	Х	Х	Х	
Application of Neem products (Azadirachtin based formulations/ NSKE 5%)	Х	Х	X	Х
Need based Application of Pesticides	Х	Х	Х	Х

IPM components in vegetable crops

Components	Cabbage	Cauli- flower	Chili pepper	Cucurbits (Gourds)
Seed treatment with <i>Trichoderma viride</i> (4g/kg)	Х	Х	Х	Х
Seed treatment with <i>Pseudomonas</i> @ 10 g/ kg of seed	Х	Х	X	Х
Nursery + seedling dip treatment with	Х	Х	X	
Pseudomonas @ 10 g/ lit of water				
Soil application of Neemcake @250 kg/ha	Х	Х	Х	Х
Boarder crop (Castor/mustard/marigold)	Х	Х	Х	Х
Use of yellow sticky traps	Х	Х	Х	Х
Clipping of shoot borer infested terminals/Roguing virus infected plants	X	X	Х	X
Pheromone traps (<i>Leucinodes, Helicoverpa,</i> Spodoptera)	X	Х	Х	Х
Parasitoid release (Trichogramma, Acerophagus)			Х	
Application of Neem products (Azadirachtin based formulations/ NSKE 5%)	X	Х	Х	X
Need based Application of Pesticides	Х	Х	Х	Х

Eggplant IPM

	Parameters	IPM	FP
	Aphid (% Plant damage)	11.2	28.0
	Whitefly population (no./leaf)	3.6	8.7
	Leafminer damage (% leaf damage)	6.2	15.8
lucio e et	Leafhopper population (no./leaf)	2.3	5.6
of IDM	Fruit borer damage (%)	12.6	31.8
on nests	Epilachna beetle (% leaf damage) Ash weevil (Leaf damage %) Root rot (% infected plants) M. incognita population (Population/250 ml soil)	2.4	5.9
and		8.2	12.7
Natural		6.2	9.7
enemies		132	225
in	Nematode gall index	2.0	5.0
Eggplant	Natural enemies (coccinellid beetles/ plant	3.0	1.0
	spiders, / plant	2.0	Stray
	syrphids /pl	1.0	Stray
	leafminer parasitism %)	18.0	4.0
	Number of chemical sprays	3	11
	Ecofriendly biopesticides sprays	4	1

Impact of IPM on pests and natural enemies in Eggplant

Details of observations	Expt. 1	Expt.2	Expt. 3
	%	%	%
	reduction	reduction	reduction
	over FP	over FP	over FP
Aphid population (%leaf damage)	45.62	35.63	53.67
Whitefly population (number per leaf)	52.84	59.26	58.64
Leafminer damage (% leaf damage)	35.62	45.62	48.26
Leafhopper population (number per leaf)	43.44	44.27	35.24
Fruit borer damage (% fruit damage)	63.44	74.27	75.24
<i>Epilachna</i> beetle (% leaf damage)	45.25	52.36	35.68
Ash weevil and root rot complex (% plants	-	25.68	-
affected)			
M. incognita population (Population/250 ml	87.75	52.88	56.23
soil)			
Nematode gall index	60.00	40.00	66.66
Percent increase in natural enemies (spiders,	26.38	38.26	29.65
coccinellid beetle and leafminer and fruit			
borer parasitoids (<i>Trathala</i> sp)			

IPM in Eggplant – Yield and Economics

The yield increase was 18.72 to 30.45 per cent in the IPM plots

The benefit received was also high in all three trials.

Field day in Eggplant

Impact of IPM on pests and Natural enemies in Okra

Parameter	IPM	FP
Aphid (% Plant damage)	4.1	6.0
Whitefly population (number per leaf)	9.6	18.5
Leafhopper population (number per leaf)	4.8	9.5
Serpentine leafminer damage (% leaf damage)	7.6	10.5
Fruit borer damage (%)	8.1	13.8
Yellow vein Mosaic (% infected plants)	2.8	7.1
Powdery mildew (PDI)	6.0	9.4
Root rot (% infected plants)	6.0	9.2
<i>M. incognita</i> population (Population/250 ml soil)	62.0	102.0
Nematode gall index	1.1	2.3
Natural enemies (coccinellid beetles,/ plant spiders, / plant	4.3 2 8	2.8
syrphids /pl	2.0	0.8
leafminer parasitism %	14.8	7.0
Number of chemical sprays	1	5
Ecofriendly biopesticides sprays	3	1

Impact of IPM on pests and natural enemies in Okra

Details of observations	Expt. 1	Expt.2	Expt. 3
	% reduction	% reduction	% reduction
	over FP	over FP	over FP
Aphid population (% leaf damage)	54.0	62.8	66.7
Whitefly population (number per leaf)	70.8	93.3	75.8
Leafhopper population (number per leaf)	64.2	-	65.8
Serpentine leafminer damage(% leaf damage)	45.3	52.6	59.2
Fruit borer damage (% damage in fruits)	62.8	-	65.8
Yellow vein Mosaic (% infested plants)	74.40	65.2	58.7
Powdery mildew (% leaf damage)	32.7	-	47.3
Root rot (% infested plants)	-	91.6	52.6
M. incognita population (Population/250 ml	56.16	60.88	61.94
soil <u>)</u>			
Nematode gall index	60.00	60.00	80.00
Percent increase in natural enemies	21.56	14.32	22.21
(coccinellid beetles, spiders, syrphids			
leafminer parasitoids)			

IPM in Okra – Yield and Economics

•The yield increase was 12.43 to 45.54 per cent in the IPM plots above the farmers practice.

•The benefit received was also high in all the three trials

Tomato IPM trials

Impact of IPM on pests and natural enemies in Tomato

Details of observations	Expt. 1	Expt. 2	Expt. 3	Expt. 4	Expt.5
	%	%	% reduction	% reduction	%
	reduction	reduction	over FP	over FP	reduction
	over FP	over FP			over FP
Thrips population (number per	40.38	32.14	60.02	73.68	60.00
plant)					
Leafminer damage (% leaf	64.33	86.83	42.0	80.00	42.00
damage)					
Whitefly population (number	45.72	52.84	59.26	58.64	62.84
per leaf)					
Fruit borer damage (% damage	53.21	63.4 4	74.27	75.00	74.27
in fruits)					
Leaf curl (% infested plants)	50.00	45.23	45.02	47.02	51.66
PBNV(% infested plants)	46.82	20.39	44.26	49.84	45.35
M. incognita population	46.88	50.76	42.94	42.94	46.88
(Population/250 ml soil <u>)</u>					
Nematode gall index	60.00	50.00	60.00	80.00	66.80
Percent increase in natural	23.62	28.48	31.05	18.68	24.53
enemies (coccinellid beetles,					
spiders, leafminer parasitoids,					
Chrysopa)					

IPM Field Trial on Tomato

IPM in Tomato – Yield and Economics

Details	Expt.1		Expt. 2		Expt. 3		Expt. 4		Expt. 5	
	IPM	FP	IPM	FP	IPM	FP	IPM	FP	IPM	FP
Yield (t/ha)	28.30	18.50	29.80 (+40.56)	21.20	23.20 (+43.20)	16.20	22.90 (+60.13)	14.30	25.30 (+31.90)	17.23
B: C ratio	2.36:1	1.56:1	2.98:1	1.35:1	3.23:1	2.01:1	2.95:1	1.86:1	3.23:1	2.23:1

IPM: Integrated Pest management ; FP: Famers' practice

The yield increase was 31.60 to 60.13 per cent in the IPM plots relative to the farmers' practice.

Onion (Shallot) IPM

Impact of IPM on pests in Onion (Shallot)

Treatment	Thrips Population (No./plant)	Leaf miner damage (%)	Cut worm damage (%)	Basal rot (%)	Purple blotch (PDI)	
Location I (Rabi 2009-	10) Figures	s in parenthese	es are per cent ind	crease over farn	ner's practice	
IPM	10.81 (27.2)	13.20 (44.1)	5.48 (40.0)	1.80 (67.9)	20.0 (56.1)	
FP	14.85	23.61	9.13	5.60	45.6	
Location II (Kharif 2010))					
IPM	3.36 (65.7)	-	0.97 (39.4)	7.25 (52.0)	-	
FP	9.80	-	1.60	15.10	-	
Location III (Kharif 2010)					
IPM	4.85 (52.5)	-	-	4.80 (61.0)	-	
FP	10.22	-	-	12.30	-	
Location IV (Rabi 2010-11)						
IPM	8.30 (48.0)	13.76 (30.5)	3.92 (42.8)	2.29 (54.6)	24.4 (47.8)	
FP	15.95	19.80	6.85	5.04	46.7	

Impact of IPM on pests in Onion (Shallot)

Treatment	Thrips Population (No./plant)	Leaf miner damage (%)	Cut worm damage (%)	Basal rot (%)	Purple blotch (PDI)	
Location V (Rabi 2010	-11) Figures	s in parentheses	are per cent inc	rease over farm	er's practice	
IPM	1.71 (60.5)	13.57 (28.1)	4.83 (34.3)	1.71 (60.5)	31.1 (46.2)	
FP	4.33	18.88	7.35	4.33	57.8	
Location VI (Rabi 2011-12)						
IPM	6.92 (51.8)	9.83 (39.7)	2.37 (61.5)	3.12 (51.7)	22.4 (60.1)	
FP	14.35	16.29	6.15	6.46	56.1	
Overall mean						
IPM	5.99 (48.3)	12.59 (35.9)	3.51 (43.6)	3.50 (57.0)	24.5 (52.5)	
FP	11.58	19.65	6.22	8.14	51.6	

IPM in Onion(Shallot) – Yield and Economics

Treatment	Bulb Yield (t/ha)	B:C ratio
Location I (Rabi 2009-10)		
IPM	15.62 (28.8)	1.84:1
FP	12.13	1.41:1
Location II (Kharif 2010)		
IPM	12.50 (20.2)	1.73:1
FP	10.40	1.48:1
Location III (Kharif 2010)		
IPM	13.60 (21.4)	1.96:1
FP	11.20	1.61:1
Location IV (Rabi 2010-11)		
IPM	14.58 (29.3)	6.36:1
FP	11.28	5.42:1

IPM in Onion – Yield and Economics

Technology dissemination

Cabbage IPM

Impact of IPM on pests and Natural enemies in Cabbage

Parameter	IPM	FP
Cut worm damage %	4.0	11.0
DBM larval population / pl	8.0	18.0
DBM damage	4.0	16.0
Spodoptera leaf damage %	7.0	22.0
M. incognita population	190	320
(Population/250 ml soil)		
Nematode gall index	1	5
NE Cotesia Parasitism %	17.0	7.6
Number of chemical sprays	2	7
Ecofriendly biopesticides sprays	2	0

Impact of IPM on pests and natural enemies in Cabbage

	Expt. 1	Expt.2
Details of observations	% reduction	% reduction
	over FP	over FP
Cutworm damage (% leaf damage)	45.2	35.6
Diamondback moth larval population (no./ leaf)	34.2	42.8
Diamondback moth and Spodoptera damage (%	41.1	46.6
leaf/head damage)		
<i>M. incognita</i> population (Population/250 ml soil)	41.0	34.3
Nematode gall index	75.0	66.7
Percent increase in natural enemies (coccinellid beetles, spiders, <i>Cotesia plutellae</i>)	32.6	28.7

IPM in Cabbage – Yield and Economics

Popularization of IPM- Cabbage- Field day

Cauliflower IPM

Integrated Pest Management in Cauliflower

Variety : Local

Date of Planting : 21.07.2010

Components of IPM :

- Seed /nursery treatment with <u>Pseudomonas fluorescens</u> @10g/kg/ lit water
- 2. Seedling root dip with Pseudomonas fluorescens @ 10g/ lit water
- 3. Soil application of Neemcake @250kg/ha
- 4. Soil application of Pseudomonas fluorescens @ 2.5kg/ha
- 5 Mustard intercrop to attract Plutella
- 6 Use of vellow sticky traps aginst aphid
- 7. Plutella adult monitoring with pheromone traps
- 8. Application of Neem products (Azadirachtin based
- formulations / NSKE)
- 9. Need based Application of insecticides /fungicides

IPM CRSP Scientists TNAU, Coimbatore

Impact of IPM in Cauliflower

Domomotor	Expt.1		Expt. 2.	
r al ameter	IPM	FP	IPM	FP
Cut worm damage %	3.6	8.2	1.6	3.4
DBM larval pop./ pl	2.4	5.6	5.4	12.2
DBM damage %	5.2	8.7	7.2	17.0
Spodoptera damage %	3.2	11.7	5.6	11.8
<i>M. incognita</i> population (Population/250 ml soil)	163	329	162	348
Nematode gall index	1	5	1	5
NE <i>Cotesia</i> Parasitism %	24.6	8.9	16.2	7.6
Number of chemical sprays	1	5	2	5
Ecofriendly biopesticides sprays	3	1	2	4

Impact of IPM on pests and natural enemies in Cauliflower in previous experiments

	Expt. 1	Expt.2
Details of observations	% reduction	% reduction over
	over FP	FP
Cutworm (% leaf damage)	52.84	45.64
DBM population (no./ leaf)	43.44	42.86
DBM damage(% leaf/head damage)	63.44	56.82
Spodoptera(% leaf/head damage)	45.62	38.98
M. incognita population	46.91	34.21
(Population/250 ml soil)		
Nematode gall index	82.68	60.00
Percent increase in natural enemies	26.82	29.87
(coccinellid beetles, spiders, Cotesia		
plutellae)		

IPM in Cauliflower – Yield and Economics

The yield increase was 19.98 to 33.13 per cent increase in the IPM plots above the farmers' practice.

IPM in cucurbits

Fruit fly, leafminer, defoliators, insect vectors, Virus diseases, leaf spots, RKN

Impact of IPM in Ashgourd and Pumpkin

Parameter	Ashgourd		Pumpkin	
	IPM	FP	IPM	FP
Fruitfly (% affected fruits)	2.3	6.4	-	-
Cucumber beetle (% plant damage)	1.3	12.7	3.5	16.8
Whitefly (no./plant)	stray	stray	2.2	5.1
Powdery mildew (PDI)	1.9	4.7	2.7	4.2
<i>M. incognita</i> population (Population/250 ml soil <u>)</u>	148	320	174	320
Nematode gall index	1	5	2	4
CMV (% Infection)	6.8	13.3	4.6	9.4
Number of chemical sprays	-	3	1	4
Ecofriendly biopesticide sprays	2	-	2	-
Yield(t/ha)	17.70	14.62	19.30	15.10
B:C ratio	1.89:1	1.35:1	2.06:1	1.48:1

Impact of IPM in Bitter gourd and Snake gourd

Parameter	Bitter Gourd		Snake gourd	
	IPM	FP	IPM	FP
Leaf miner (% damage)	0.2	0.3	6.3	16.9
Leafhopper (no./plant)	3.6	12.3		
Whitefly(no./plant)	stray	stray	2.2	3.2
Fruitfly (% affected fruits)	6.4	20.5	10.6	36.8
Epilachna damage (% leaf	6.5	23.4		
damage)				
Semilooper (% leaf damage)	-	-	8.2	25.3
Powdery mildew (PDI)	3.7	4.8	-	-
M. incognita population	152	390	142	389
(Population/250 ml soil)				
Nematode gall index	2	5	1	5
CMV (% Infection)	13.5	29.1	8.8	13.4
Number of chemical sprays	1	7	2	8
Ecofriendly biopesticides sprays	2	0	2	0
Yield (t/ha)	39.60	33.00	15.23	12.65
B:C ratio	2.42:1	1.68:1	1.95:1	1.26:1

Chili (hot) pepper IPM

Impact of IPM in Chili (hot) pepper

Parameter	IPM	FP
Mean thrips population (no./leaf)	2.92	4.24
Fruit borer damage (%)	2.68	3.35
Yellow mites (no./leaf)	4.60	6.23
Damping off (%)	1.3	9.7
Cercospora leaf spot (PDI)	26.4	34.0
Fruit rot (%)	4.4	7.9
Green chilli fruit yield (t/ha)	35.73	31.38
Number of chemical sprays	2	9
Ecofriendly biopesticides sprays	4	1
C:B ratio	1:2.38	1:2.02

Partnership for Success Controlling the Papaya Mealy Bug in India

Classical biological control of papaya mealybug

Once the USDA parasitoids arrived in India, Tamil Nadu Agricultural University (TNAU) under the guidance of NBAII took the lead in further breeding efforts and trained scientists on management, release, and conservation of the parasitoids.

1mm Saved 35M

"The Tamil Nadu Agricultural University bred the parasitoids in 57 different locations in the state at a total investment of \$200, 000," said Dr P. Murugesa Boopathi, the Vice-Chancellor of the University. "With the release of the parasitoids, farmers in the state stopped using pesticides, saving \$35 million." he added.

NBAII Celebrates Successful Biological Control of Papaya Mealybug in India- Oct 20,2012

William Hammink, Mission Director, USAID India sums up, "this partnership demonstrates the whole of government approach in international co-operation. The significant role played by USAID and USDA is the way forward for future collaborative efforts."

Technology dissemination

Technology dissemination

Challenges in vegetable IPM

- Technology gap- Diagnosis for nematodes and
- Diagnosis and management of Viruses
- Change of cultivar/hybrid season after season
- Availability of quality bio-inputs at door step (as like pesticides)
- Gap between knowledge and adoption
- Need for better extension service at field level
- Fluctuation in market price of the produce
- No single package is suitable for a region/ state/ country/ continent
- Packing technologies suited to individual village/farm

Sharing knowledge with other IPM-CRSP host countries

SI . No.	Name of the training / Workshop	Duration	Participants
1	International Plant Virus Disease Network Workshop	12 th to 16 th July 2010	Total:25 Female:11
2	Production of Biocontrol agents (<i>Pseudomonas</i> and <i>Trichoderma</i>)	18 th to 21 st July 2011	Total: 11 Female:5
3	Research and Management of Insect-transmitted virus diseases in vegetables in the tropics and subtropics	10 th to 13 th July 2012	Total:34 Female:13

Other Institutes working on vegetable IPM in India

INDIAN INSTITUTE OF HORTICULTURAL RESEARCH

A premier Institute of Indian Council of Agricultural Research

भारतीय बागवानी अनुसंधान संस्थान

Indian Institute of Vegetable Research (Indian Council of Agricultural Research) भारतीय सब्जी अनुसंधान संस्थान

SAUs-AICVIP

TERI, New Delhi & NGOs

Thanks to.....

Program enhancement funds (PEF) for Entomology 2012 Acknowledgement : This presentation was made possible through support provided by the Agriculture Office within the Bureau for Economic Growth, Agriculture, and Trade (EGAT) of the U.S. Agency for International Development, under the terms of the Integrated Pest Management

Collaborative Research Support Program (IPM CRSP) (Award No.

EPP-A-00-04-00016-00). The opinions expressed herein are those of the author and do not necessarily reflect the views of the U.S. Agency for International Development.